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Abstract

In this paper, we study probabilistic numerical methods based on optimal quanti-

zation algorithms for computing the solution to optimal multiple switching problems

with regime-dependent state process. We first consider a discrete-time approximation

of the optimal switching problem, and analyze its rate of convergence. The error is of

order 1
2 − ε, ε > 0, and of order 1

2 when the switching costs do not depend on the state

process. We next propose quantization numerical schemes for the space discretization

of the discrete-time Euler state process. A Markovian quantization approach relying

on the optimal quantization of the normal distribution arising in the Euler scheme is

analyzed. In the particular case of uncontrolled state process, we describe an alterna-

tive marginal quantization method, which extends the recursive algorithm for optimal

stopping problems as in [2]. A priori Lp-error estimates are stated in terms of quan-

tization errors. Finally, some numerical tests are performed for an optimal switching

problem with two regimes.
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1 Introduction

On some filtered probability space (Ω,F ,F = (Ft)t≥0
,P), let us introduce the controlled

regime-switching diffusion in Rd governed by

dXt = b(Xt, αt)dt+ σ(Xt, αt)dWt,

where W is a standard d-dimensional Brownian motion, α = (τn, ιn)n ∈ A is the switching

control represented by a nondecreasing sequence of stopping times (τn) together with a

sequence (ιn) of Fτn-measurable random variables valued in a finite set {1, . . . , q}, and αt
is the current regime process, i.e. αt = ιn for τn ≤ t < τn+1. We then consider the optimal

switching problem over a finite horizon:

V0 = sup
α∈A

E
[ ∫ T

0
f(Xt, αt)dt+ g(XT , αT )−

∑
τn≤T

c(Xτn , ιn−1, ιn)
]
. (1.1)

Optimal switching problems can be seen as sequential optimal stopping problems belonging

to the class of impulse control problems, and arise in many applied fields, for example in real

option pricing in economics and finance. It has attracted a lot of interest during the past

decades, and we refer to Chapter 5 in the book [15] and the references therein for a survey

of some applications and results in this topic. It is well-known that optimal switching

problems are related via the dynamic programming approach to a system of variational

inequalities with inter-connected obstacles in the form:

min
[
− ∂vi

∂t
− b(x, i).Dxvi −

1

2
tr(σ(x, i)σ(x, i)′D2

xvi)− f(x, i) , (1.2)

vi −max
j 6=i

(vj − c(x, i, j))
]

= 0 on [0, T )× Rd,

together with the terminal condition vi(T, x) = g(x, i), for any i = 1, . . . , q. Here vi(t, x)

is the value function to the optimal switching problem starting at time t ∈ [0, T ] from the

state Xt = x ∈ Rd and the regime αt = i ∈ {1, . . . , q}, and the solution to the system (1.2)

has to be understood in the weak sense, e.g. viscosity sense.

The purpose of this paper is to solve numerically the optimal switching problem (1.1),

and consequently the system of variational inequalities (1.2). These equations can be solved

by analytical methods (finite differences, finite elements, etc ...), see e.g. [12], but are known

to require heavy computations, especially in high dimension. Alternatively, when the state

process is uncontrolled, i.e. regime-independent, optimal switching problems are connected

to multi-dimensional reflected Backward Stochastic Differential Equations (BSDEs) with

oblique reflections, as shown in [8] and [9], and the recent paper [5] introduced a discretely

obliquely reflected numerical scheme to solve such BSDEs. From a computational view-

point, there are rather few papers dealing with numerical experiments for optimal switching

problems. The special case of two regimes for switching problems can be reduced to the re-

solution of a single BSDE with two reflecting barriers when considering the difference value

process, and is exploited numerically in [7]. We mention also the paper [4], which solves an

optimal switching problem with three regimes by considering a cascade of reflected BSDEs

with one reflecting barrier derived from an iteration on the number of switches.
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We propose probabilistic numerical methods based on dynamic programming and opti-

mal quantization methods combined with a suitable time discretization procedure for com-

puting the solution to optimal multiple switching problem. Quantization methods were

introduced in [2] for solving variational inequality with given obstacle associated to optimal

stopping problem of some diffusion process (Xt). The basic idea is the following. One first

approximates the (continuous-time) optimal stopping problem by the Snell envelope for the

Markov chain (X̄tk) defined as the Euler scheme of the (uncontrolled) diffusion X, and then

spatially discretize each random vector X̄tk by a random vector taking finite values through

a quantization procedure. More precisely, (X̄tk)k is approximated by (X̂k)k where X̂k is

the projection of X̄tk on a finite grid in the state space following the closest neighbor rule.

The induced Lp-quantization error, ‖X̄tk − X̂k‖p, depends only on the distribution of X̄tk

and the grid, which may be chosen in order to minimize the quantization error. Such an

optimal choice, called optimal quantization, is achieved by the competitive learning vector

quantization algorithm (or Kohonen algorithm) developed in full details in [2]. One finally

computes the approximation of the optimal stopping problem by a quantization tree algo-

rithm, which mimics the backward dynamic programming of the Snell envelope. In this

paper, we develop quantization methods to our general framework of optimal switching

problem. With respect to standard optimal stopping problems, some new features arise

on one hand from the regime-dependent state process, and on the other hand from the

multiple switching times, and the discrete sum for the cumulated switching costs.

We first study a time discretization of the optimal switching problem by considering

an Euler-type scheme with step h = T/m for the regime-dependent state process (Xt)

controlled by the switching strategy α:

X̄tk+1
= X̄tk + b(X̄tk , αtk)h+ σ(X̄tk , αtk)

√
h ϑk+1, tk = kh, k = 0, . . . ,m, (1.3)

where ϑk, k = 1, . . . ,m, are iid, and N (0, Id)-distributed. We then introduce the optimal

switching problem for the discrete-time process (X̄tk) controlled by switching strategies

with stopping times valued in the discrete time grid {tk, k = 0, . . . ,m}. The convergence

of this discrete-time problem is analyzed, and we prove that the error is in general of order

h
1
2
−ε, and this estimate holds true with ε = 0, as for optimal stopping problems, when the

switching costs c(i, j) do not depend on the state process. Arguments of the proof rely on

a regularity result of the controlled diffusion with respect to the switching strategy, and

moment estimates on the number of switches. This extends the convergence rate result in

[5] derived in the case where X is regime-independent.

Next, we propose approximation schemes by quantization for computing explicitly the

solution to the discrete-time optimal switching problem. Since the controlled Markov chain

(X̄tk)k cannot be directly quantized as in standard optimal stopping problems, we adopt a

Markovian quantization approach in the spirit of [13], by considering an optimal quantiza-

tion of the Gaussian random vector ϑk+1 arising in the Euler scheme (1.3). A quantization

tree algorithm is then designed for computing the approximating value function, and we

provide error estimates in terms of the quantization errors ‖ϑk − ϑ̂k‖p and state space grid

parameters. Alternatively, in the case of regime-independent state process, we propose a

quantization algorithm in the vein of [2] based on marginal quantization of the uncontrolled
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Markov chain (X̄tk)k. A priori Lp-error estimates are also established in terms of quantiza-

tion errors ‖X̄tk − X̂k‖p. Finally, some numerical tests on the two quantization algorithms

are performed for an optimal switching problem with two regimes.

The plan of this paper is organized as follows. Section 2 formulates the optimal swit-

ching problem and sets the standing assumptions. We also show some preliminary results

about moment estimates on the number of switches. We describe in Section 3 the time dis-

cretization procedure, and study the rate of convergence of the discrete-time approximation

for the optimal switching problem. Section 4 is devoted to the approximation schemes by

quantization for the explicit computation of the value function to the discrete-time optimal

switching problem, and to the error analysis. Finally, we illustrate our results with some

numerical tests in Section 5.

2 Optimal switching problem

2.1 Formulation and assumptions

We formulate the finite horizon multiple switching problem. Let us fix a finite time T

∈ (0,∞), and some filtered probability space (Ω,F ,F = (Ft)t≥0
,P) satisfying the usual

conditions. Let Iq = {1, . . . , q} be the set of all possible regimes (or activity modes).

A switching control is a double sequence α = (τn, ιn)n≥0, where (τn) is a nondecreasing

sequence of stopping times, and ιn are Fτn-measurable random variables valued in Iq. The

switching control α = (τn, ιn) is said to be admissible, and denoted by α ∈ A, if there exists

an integer-valued random variable N with τN > T a.s. Given α = (τn, ιn)n≥0 ∈ A, we may

then associate the indicator of the regime value defined at any time t ∈ [0, T ] by

It = ι01{0≤t<τ0} +
∑
n≥0

ιn1{τn≤t<τn+1},

which we shall sometimes identify with the switching control α, and we introduce N(α) the

(random) number of switches before T :

N(α) = #
{
n ≥ 1 : τn ≤ T

}
.

For α ∈ A, we consider the controlled regime-switching diffusion process valued in Rd,
governed by the dynamics

dXs = b(Xs, Is)ds+ σ(Xs, Is)dWs, X0 = x0 ∈ Rd, (2.1)

where W is a standard d-dimensional Brownian motion on (Ω,F ,F = (Ft)0≤t≤T ,P). We

shall assume that the coefficients bi = b(., i): Rd → Rd, and σi(.) = σ(., i) : Rd → Rd×d, i
∈ Iq, satisfy the usual Lipschitz conditions.

We are given a running reward, terminal gain functions f, g : Rd × Iq → R, and a cost

function c : Rd × Iq × Iq → R, and we set fi(.) = f(., i), gi(.) = g(., i), cij(.) = c(., i, j), i, j

∈ Iq. We shall assume the Lipschitz condition:

(Hl) The coefficients fi, gi and cij , i, j ∈ Iq are Lipschitz continuous on Rd.
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We also make the natural triangular condition on the functions cij representing the

instantaneous cost for switching from regime i to j:

(Hc)

cii(.) = 0, i ∈ Iq,
inf
x∈Rd

cij(x) > 0, for i, j ∈ Iq, j 6= i,

inf
x∈Rd

[
cij(x) + cjk(x)− cik(x)] > 0, for i, j, k ∈ Iq, j 6= i, k.

The triangular condition on the switching costs cij in (Hc) means that when one changes

from regime i to some regime j, then it is not optimal to switch again immediately to

another regime, since it would induce a higher total cost, and so one should stay for a while

in the regime j.

The expected total profit over [0, T ] for running the system with the admissible switching

control α = (τn, ιn) ∈ A is given by:

J0(α) = E
[ ∫ T

0
f(Xt, It)dt+ g(XT , IT )−

N(α)∑
n=1

c(Xτn , ιn−1, ιn)
]
.

The maximal profit is then defined by

V0 = sup
α∈A

J0(α). (2.2)

The dynamic version of this optimal switching problem is formulated as follows. For (t, i)

∈ [0, T ]× Iq, we denote by At,i the set of admissible switching controls α = (τn, ιn) starting

from i at time t, i.e. τ0 = t, ι0 = i. Given α ∈ At,i, and x ∈ Rd, and under the Lipschitz

conditions on b, σ, there exists a unique strong solution to (2.1) starting from x at time t,

and denoted by {Xt,x,α
s , t ≤ s ≤ T}. It is then given by

Xt,x,α
s = x+

∑
τn≤s

∫ τn+1∧s

τn

bιn(Xt,x,α
u )du+

∫ τn+1∧s

τn

σιn(Xt,x,α
u )dWu, t ≤ s ≤ T.(2.3)

The value function of the optimal switching problem is defined by

vi(t, x) = sup
α∈At,i

E
[ ∫ T

t
f(Xt,x,α

s , Is)ds+ g(Xt,x,α
T , IT )−

N(α)∑
n=1

c(Xt,x,α
τn , ιn−1, ιn)

]
,(2.4)

for any (t, x, i) ∈ [0, T ]× Rd × Iq, so that V0 = maxi∈Iq vi(0, x0).

For simplicity, we shall also make the assumption

gi(x) ≥ max
j∈Iq

[gj(x)− cij(x)], ∀(x, i) ∈ Rd × Iq. (2.5)

This means that any switching decision at horizon T induces a terminal profit, which is

smaller than a no-decision at this time, and is thus suboptimal. Therefore, the terminal

condition for the value function is given by:

vi(T, x) = gi(x), (x, i) ∈ Rd × Iq.
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Otherwise, it is given in general by vi(T, x) = maxj∈Iq [gj(x)− cij(x)].

Notations. |.| will denote the canonical Euclidian norm on Rd, and (.|.) the corresponding

inner product. For any p ≥ 1, and Y random variable on (Ω,F ,P), we denote by ‖Y ‖p =

(E|Y |p)
1
p .

2.2 Preliminaries

We first show that one can restrict the optimal switching problem to controls α with

bounded moments of N(α). More precisely, let us associate to a strategy α ∈ At,i, the

cumulated cost process Ct,x,α defined by

Ct,x,αu =
∑
n≥1

c(Xt,x,α
τn , ιn−1, ιn)1τn≤u, t ≤ u ≤ T.

We then consider for x ∈ Rd and a positive sequence K = (Kp)p∈N the subset AKt,i(x) of

At,i defined by

AKt,i(x) =
{
α ∈ At,i : E

∣∣Ct,x,αT

∣∣p ≤ Kp(1 + |x|p), ∀p ≥ 1
}
.

In the sequel, we shall assume that for each (t, x, i) ∈ [0, T ]×Rd× Iq, the optimal switching

problem vi(t, x) admits an optimal strategy α∗ satisfying E
[
|Ct,x,α

∗

T |2
]
< ∞. The existence

of an optimal strategy α∗ with E|Ct,x,α
∗

T |2 < ∞ is a wide assumption that is valid under

(Hl) and (Hg) in the case where the diffusion X is not controlled i.e. the functions b and

σ do not depend on the variable i and the function c does not depend on the variable x, as

shown in Theorem 3.1 of [9].

Proposition 2.1 Assume that (Hl) and (Hc) holds. Then there exists a positive sequence

K̄ = (K̄p)p such that

vi(t, x) = sup
α∈AK̄

t,i(x)

E
[ ∫ T

t
f(Xt,x,α

s , Is)ds+ g(Xt,x,α
T , IT )−

N(α)∑
n=1

c(Xt,x,α
τn , ιn−1, ιn)

]
(2.6)

for any (t, x, i) ∈ [0, T ]× Rd × Iq.

Remark 2.1 Under the uniformly strict positive condition on the switching costs in (Hc),

there exists some positive constant η > 0 s.t. N(α)≤ ηCt,x,αT for any (t, x, i) ∈ [0, T ]×Rd×Iq,
α ∈ At,i. Thus, for any α ∈ AKt,i(x), we have

E
∣∣N(α)

∣∣p ≤ ηKp(1 + |x|p),

which means that in the value functions vi(t, x) of optimal switching problems, one can

restrict to controls α for which the moments of N(α) are bounded by a constant depending

on x.

Before proving Proposition 2.1, we need the following Lemmata.
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Lemma 2.1 For all p ≥ 1, there exists a positive constant Kp such that

sup
α∈At,i

∥∥∥ sup
s∈[t,T ]

∣∣Xt,x,α
s

∣∣∥∥∥
p
≤ Kp(1 + |x|) ,

for all (t, x, i) ∈ [0, T ]× Rd × Iq.

Proof. Fix p ≥ 1. Then, we have from the definition of Xt,x,α
s in(2.3), for (t, x, i) ∈

[0, T ]× Rd × Iq, α ∈ At,i:

E
[

sup
s∈[t,r]

∣∣Xt,x,α
s

∣∣p] ≤ Kp

(
|x|p + E

[ ∑
τn≤r

∫ τn+1∧r

τn

∣∣bιn(Xt,x,α
u )

∣∣pdu]
+ E

[
sup
s∈[t,r]

∣∣∣ ∑
τn≤s

∫ τn+1∧s

τn

σιn(Xt,x,α
u )dWu

∣∣∣p]) ,
for all r ∈ [t, T ]. From the linear growth conditions on bi and σi, for i ∈ Iq, and Burkholder-

Davis-Gundy’s (BDG) inequality, we then get by Hölder inequality when p ≥ 2:

E
[

sup
s∈[t,r]

∣∣Xt,x,α
s

∣∣p] ≤ Kp

(
1 + |x|p +

∫ r

t
E
[

sup
s∈[t,u]

∣∣Xt,x,α
s

∣∣pdu]) ,
for all r ∈ [t, T ]. By applying Gronwall’s Lemma, we obtain the required estimate for p ≥
2 , and then also for p ≥ 1 by Hölder inequality. 2

Lemma 2.2 Under (Hl) and (Hc), the functions vi, i ∈ Iq, satisfy a linear growth con-

dition, i.e. there exists a constant K such that

|vi(t, x)| ≤ K
(
1 + |x|

)
,

for all (t, x, i) ∈ [0, T ]× Rd × Iq.

Proof. Under the linear growth condition on fi, gi in (Hl), and the nonnegativity of the

switching costs in (Hc), there exists some positive constant K s.t.

E
[ ∫ T

t
f(Xt,x,α

s , Is)ds+ g(Xt,x,α
T , IT )−

N(α)∑
n=1

c(Xt,x,α
τn , ιn−1, ιn)

]
≤ K

(
1 + E

[
sup

u∈[0,T ]

∣∣Xt,x,α
u

∣∣]),
for all (t, x, i) ∈ [0, T ]×Rd × Iq, α ∈ At, i. By combining with the estimate in Lemma 2.1,

this shows that

vi(t, x) ≤ K(1 + |x|) .

Moreover, by considering the strategy α0 with no intervention i.e. N(α0) = 0, we have

vi(t, x) ≥ E
[ ∫ T

t
f(Xt,x,α0

s , i)ds+ g(Xt,x,α0

T , i)
]

≥ −K
(

1 + E
[

sup
u∈[0,T ]

∣∣Xt,x,α
u

∣∣]).
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Again, by the estimate in Lemma 2.1, this proves that

vi(t, x) ≥ −K(1 + |x|) ,

and therefore the required linear growth condition on vi. 2

We now turn to the proof of the Proposition.

Proof of Proposition 2.1. Fix (t, x, i) ∈ [0, T ]×Rd × Iq. Denote by α∗ = (τ∗n, ζ
∗
n)n≥0 an

optimal strategy associated to vi(t, x):

vi(t, x) = E
[ ∫ T

t
f(Xt,x,α∗

s , I∗s )ds+ g(Xt,x,α∗

T , I∗T )−
N(α∗)∑
n=1

c(Xt,x,α∗
τn , ι∗n−1, ι

∗
n)
]
. (2.7)

where I∗ is the indicator regime associated to α∗. Consider the process (Y t,x,α∗ , Zt,x,α
∗
)

solution to the following Backward Stochastic Differential Equation (BSDE)

Y t,x,α∗
u = g(Xt,x,α∗

T , I∗T ) +

∫ T

u
f(Xt,x,α∗

s , I∗s )ds (2.8)

−
∫ T

u
Zt,x,α

∗
s dWs − Ct,x,α

∗

T + Ct,x,α
∗

u , t ≤ u ≤ T

and satisfying the condition

E
[

sup
s∈[t,T ]

|Y t,x,α∗
s |2

]
+ E

[ ∫ T

t
|Zt,x,α∗s |2ds

]
< ∞.

Such a solution exists under (Hl), Lemma 2.1 and E
[
|Ct,x,α

∗

T |2
]
< ∞. Moreover, by taking

expectation in (2.8) and from the dynamic programming principle for the value function in

(2.7), we have

Y t,x,α∗
u = vI∗u

(
u,Xt,x,α∗

u

)
, t ≤ u ≤ T.

From Lemma 2.1 and 2.2, there exists for each p ≥ 1 a constant Kp such that

E
[

sup
u∈[t,T ]

|Y t,x,α∗
u |p

]
≤ Kp

(
1 + |x|p

)
. (2.9)

We now prove that there exists a sequence K̄ = (K̄p)p which does not depend on (t, x, i)

such that

E
[
|Ct,x,α

∗

T |p
]
≤ K̄p(1 + |x|p) . (2.10)

Applying Itô’s formula to |Y t,x,α∗ |2 in (2.8), we have

|Y t,x,α∗

t |2 +

∫ T

t
|Zt,x,α∗s |2ds = |g(Xt,x,α∗

T , I∗T )|2 + 2

∫ T

t
Y t,x,α∗
s f(Xt,x,α∗

s , I∗s )ds

− 2

∫ T

t
Y t,x,α∗
s Zt,x,α

∗
s dWs − 2

∫ T

t
Y t,x,α∗
s dCt,x,α

∗
s .
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Using (Hl) and the inequality 2ab ≤ a2 + b2 for a, b ∈ R, we get∫ T

t
|Zt,x,α∗s |2ds ≤ K

(
1 + sup

s∈[t,T ]
|Xt,x,α∗

s |2 + sup
s∈[t,T ]

|Y t,x,α∗
s |2 + |Ct,x,α

∗

T − Ct,x,α
∗

t | sup
s∈[t,T ]

|Y t,x,α∗
s |

)
−2

∫ T

t
Y t,x,α∗
s Zt,x,α

∗
s dWs . (2.11)

Moreover, from (2.8), we have

|Ct,x,α
∗

T − Ct,x,α
∗

t |2 ≤ K
(

1 + sup
s∈[t,T ]

|Xt,x,α∗
s |2 + sup

s∈[t,T ]
|Y t,x,α∗
s |2

+
∣∣∣ ∫ T

t
Zt,x,α

∗
s dWs

∣∣∣2) (2.12)

Combining (2.11) and (2.12) and using the inequality ab ≤ a2

2ε + εb2

2 , for a, b ∈ R and ε >

0, we obtain∫ T

t
|Zt,x,α∗s |2ds ≤ K

(
(1 + ε)

(
1 + sup

s∈[t,T ]
|Xt,x,α∗

s |2
)

+ sup
s∈[t,T ]

|Y t,x,α∗
s |2

(
ε+

1

ε

)
+ ε
∣∣∣ ∫ T

t
Zt,x,α

∗
s dWs

∣∣∣2)− 2

∫ T

t
Y t,x,α∗
s Zt,x,α

∗
s dWs .

Elevating the previous estimate to the power p/2 and taking expectation, it follows from

BDG inequality, Lemma 2.1 and (2.9) that

E
[( ∫ T

t
|Zt,x,α∗s |2ds

) p
2
]
≤ Kp

(
(1 + ε

p
2 )
(

1 + E sup
s∈[t,T ]

|Xt,x,α∗
s |p

)
+
(
ε

p
2 +

1

ε
p
2

)
E sup
s∈[t,T ]

|Y t,x,α∗
s |p

+ ε
p
2E
∣∣∣ ∫ T

t
Zt,x,α

∗
s dWs

∣∣∣p + E
∣∣∣ ∫ T

t
Y t,x,α∗
s Zt,x,α

∗
s dWs

∣∣∣ p2)
≤ Kp

(
(1 + |x|p)

(
1 + ε

p
2 +

1

ε
p
2

)
+ ε

p
2E
[( ∫ T

t
|Zt,x,α∗s |2ds

) p
2
]

+ E
[( ∫ T

t
|Y t,x,α∗
s Zt,x,α

∗
s |2ds

) p
4
])

(2.13)

≤ Kp

(
(1 + |x|p)

(
1 + ε

p
2 +

1

ε
p
2

)
+ ε

p
2E
[( ∫ T

t
|Zt,x,α∗s |2ds

) p
2
])

,

where we used again the inequality ab ≤ a2

2ε + εb2

2 for the last term in the r.h.s of (2.13).

Taking ε small enough, this yields

E
[( ∫ T

t
|Zt,x,α∗s |2ds

) p
2
]
≤ Kp

(
1 + |x|p

)
,

Elevating now inequality (2.12) to the power p/2, and using the previous inequality together

with BDG inequality, we get with the estimate of Lemma 2.1 and (2.9):

E|Ct,x,α
∗

T − Ct,x,α
∗

t |p ≤ K̄p(1 + |x|p), (2.14)

9



for some positive constant K̄p. Since α∗ is optimal, and from the triangular condition in

(Hc), we know that at the initial time t, there is at most one decision time τ∗1 . Thus,

from the linear growth condition on the switching cost, E[|Ct,x,α
∗

t |p] ≤ K̄p(1 + |x|p), which

implies with (2.14) that α∗ ∈ AK̄t,i, and proves the required result. 2

In the sequel of this paper, we shall assume that (Hl) and (Hc) stand in force.

3 Time discretization

We first consider a time discretization of [0, T ] with time step h = T/m ≤ 1, and partition

Th = {tk = kh, k = 0, . . . ,m}. For (tk, i) ∈ Th× Iq, we denote by Ahtk,i the set of admissible

switching controls α = (τn, ιn)n in Atk,i, such that τn are valued in {`h, ` = k, . . . ,m}, and

we consider the value functions for the discretized optimal switching problem:

vhi (tk, x) = sup
α∈Ah

tk,i

E
[m−1∑
`=k

f(Xtk,x,α
t`

, It`)h+ g(Xtk,x,α
tm , Itm)

−
N(α)∑
n=1

c(Xtk,x,α
τn , ιn−1, ιn)

]
, (3.1)

for (tk, i, x) ∈ Th × Iq × Rd.

The next result provides an error analysis between the continuous-time optimal switch-

ing problem and its discrete-time version.

Theorem 3.1 For any ε > 0, there exists a positive constant Kε (not depending on h)

such that

|vi(tk, x)− vhi (tk, x)| ≤ Kε(1 + |x|)h
1
2
−ε,

for all (tk, x, i) ∈ Th × Rd × Iq. Moreover if the cost functions cij, i, i ∈ Iq, do not depend

on x, then the previous inequality also holds for ε = 0.

Remark 3.1 For optimal stopping problems, it is known that the approximation by the

discrete-time version gives an error of order h
1
2 , see e.g. [11] and [1]. We recover this rate

of convergence for multiple switching problems when the switching costs do not depend on

the state process. However, in the general case, the error is of order h
1
2
−ε for any ε > 0.

Such feature was showed in [5] in the case of uncontrolled state process X, and is extended

here when X may be influenced through its drift and diffusion coefficient by the switching

control.

Before proving this Theorem, we need the two following lemmata. The first one deals

with the regularity in time of the controlled diffusion uniformly in the control, and the

second one deals with the regularity of the controlled diffusion with respect to the control.
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Lemma 3.1 For any p ≥ 1, there exists a constant Kp such that

sup
α∈Atk,i

max
k≤`≤m−1

∥∥∥ sup
s∈[t`,t`+1]

∣∣Xtk,x,α
s −Xtk,x,α

t`

∣∣∥∥∥
p
≤ Kp(1 + |x|)h

1
2 ,

for all x ∈ Rd, i ∈ Iq, k = 0, . . . , n.

Proof. Fix p ≥ 1. From the definition of Xt,x,α in (2.3), we have for all (tk, x, i) ∈
Th × Rd × Iq and α ∈ Atk,i,

E
[

sup
u∈[t`,s]

∣∣Xt,x,α
u −Xt,x,α

t`

∣∣p] ≤ Kp

(
E
[( ∫ s

t`

|bIu(Xt,x,α
u )|du

)p]
+ E

[
sup

u∈[t`,s]

∣∣∣ ∫ u

t`

σIr(Xt,x,α
r )dWr

∣∣∣p]) ,
for all s ∈ [t`, t`+1]. From BDG and Jensen inequalities for p ≥ 2, we then have

E
[

sup
u∈[t`,s]

∣∣Xt,x,α
u −Xt,x,α

t`

∣∣p] ≤ Kph
p
2
−1
(
E
[ ∫ s

t`

∣∣bIu(Xt,x,α
u )

∣∣pdu]+ E
[ ∫ s

t`

∣∣σIu(Xt,x,α
u )

∣∣pdu]) ,
From the linear growth conditions on bi and σi, for i ∈ Iq, and Lemma 2.1, we conclude

that the following inequality

E
[

sup
s∈[t`,t`+1]

∣∣Xt,x,α
s −Xt,x,α

t`

∣∣p] ≤ Kp(1 + |x|p)h
p
2 ,

holds for p ≥ 2, and then also for p ≥ 1 by Hölder inequality. 2

For a strategy α = (τn, ιn)n ∈ Atk,i we denote by α̃ = (τ̃n, ι̃n)n the strategy of Ahtk,i
defined by

τ̃n = min{t` ∈ Th : t` ≥ τn} , ι̃n = ιn, n ∈ N.

The strategy α̃ can be seen as the approximation of the strategy α by an element of Ahtk,i.
We then have the following regularity result of the diffusion in the control α.

Lemma 3.2 There exists a constant K such that∥∥∥ sup
s∈[tk,T ]

∣∣Xtk,x,α
s −Xtk,x,α̃

s

∣∣∥∥∥
2
≤ K

(
E[N(α)2]

) 1
4
(1 + |x|)h

1
2 ,

for all x ∈ Rd, i ∈ Iq, k = 0, . . . , n and α ∈ Atk,i.

Proof. From the definition of Xt,x,α and Xt,x,α̃, for (tk, x, i) ∈ Th × Rd × Iq, α ∈ AKtk,i,
we have by BDG inequality:

E
[

sup
u∈[tk,s]

∣∣Xt,x,α
s −Xt,x,α̃

s

∣∣2] ≤ K
(
E
[ ∫ s

tk

∣∣b(Xt,x,α
u , Iu)− b(Xt,x,α̃

u , Ĩu)
∣∣2du]

+ E
[ ∫ s

tk

∣∣σ(Xt,x,α
u , Iu)− σ(Xt,x,α̃

u , Ĩu)
∣∣2du]) ,
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for all s ∈ [tk, T ]. Then using Lipschitz property of bi and σi for i ∈ Iq we get:

E
[

sup
u∈[tk,s]

∣∣Xt,x,α
s −Xt,x,α̃

s

∣∣2] ≤ K
(
E
[ ∫ s

tk

∣∣Xt,x,α
u −Xt,x,α̃

u

∣∣2du]
+ E

[ ∫ s

tk

∣∣b(Xt,x,α
u , Iu)− b(Xt,x,α

u , Ĩu)
∣∣2du]

+ E
[ ∫ s

tk

∣∣σ(Xt,x,α
u , Iu)− σ(Xt,x,α

u , Ĩu)
∣∣2du])

≤ K
(
E
[ ∫ s

tk

sup
r∈[tk,u]

∣∣Xt,x,α
r −Xt,x,α̃

r

∣∣2du] (3.2)

+ E
[(

sup
u∈[tk,T ]

∣∣Xt,x,α
u

∣∣2 + 1
) ∫ s

tk

1Is 6=Ĩsds
])

,

for all s ∈ [tk, T ]. From the definition of α̃ we have∫ s

tk

1Is 6=Ĩsds ≤ N(α)h ,

which gives with (3.2), Lemma 2.1, Remark 2.1 and Hölder inequality:

E
[

sup
u∈[tk,s]

∣∣Xt,x,α
u −Xt,x,α̃

u

∣∣2] ≤ K
(
E
[ ∫ s

tk

sup
r∈[tk,u]

∣∣Xt,x,α
r −Xt,x,α̃

r

∣∣2du]
+
(
E[N(α)2]

) 1
2 (1 + |x|2)h

)
,

for all s ∈ [tk, T ]. We conclude with Gronwall’s Lemma. 2

We are now ready to prove the convergence result for the time discretization of the optimal

switching problem.

Proof of Theorem 3.1. We introduce the auxiliary function ṽhi defined by

ṽhi (tk, x) = sup
α∈Ah

tk,i

E
[ ∫ T

tk

f(Xtk,x,α
s , Is)ds+ g(Xtk,x,α

T , IT )−
N(α)∑
n=1

c(Xtk,x,α
τn , ιn−1, ιn)

]
,

for all (tk, x) ∈ Th × Rd. We then write

|vi(tk, x)− vhi (tk, x)| ≤ |vi(tk, x)− ṽhi (tk, x)|+ |ṽhi (tk, x)− vhi (tk, x)| ,

and study each of the two terms in the right-hand side.

• Let us investigate the first term. By definition of the approximating strategy α̃ = (τ̃n, ι̃n)n
∈ Ahtk,i of α ∈ Atk,i, we see that the auxiliary value function ṽhi may be written as

ṽhi (tk, x) = sup
α∈Atk,i

E
[ ∫ T

tk

f(Xtk,x,α̃
s , Ĩs)ds+ g(Xtk,x,α̃

T , ĨT )−
N(α)∑
n=1

c(Xtk,x,α̃
τ̃n

, ι̃n−1, ι̃n)
]
,
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where Ĩ is the indicator of the regime value associated to α̃. Fix now a positive sequence

K̄ = (K̄p)p s.t. relation (2.6) in Proposition 2.1 holds, and observe that

sup
α∈AK̄

tk,i(x)

E
[ ∫ T

tk

f(Xtk,x,α̃
s , Ĩs)ds+ g(Xtk,x,α̃

T , ĨT )−
N(α)∑
n=1

c(Xtk,x,α̃
τ̃n

, ι̃n−1, ι̃n)
]

≤ ṽhi (tk, x) ≤ vi(tk, x)

= sup
α∈AK̄

tk,i(x)

E
[ ∫ T

tk

f(Xtk,x,α
s , Is)ds+ g(Xtk,x,α

T , IT )−
N(α)∑
n=1

c(Xtk,x,α
τn , ιn−1, ιn)

]
.

We then have

|vi(tk, x)− ṽhi (tk, x)| ≤ sup
α∈AK̄

tk,i(x)

[
∆1
tk,x

(α) + ∆2
tk,x

(α)
]
, (3.3)

with

∆1
tk,x

(α) = E
[ ∫ T

tk

∣∣f(Xtk,x,α
s , Is)− f(Xtk,x,α̃

s , Ĩs)
∣∣ds+

∣∣g(Xtk,x,α
T , IT )− g(Xt,x,α̃

T , ĨT )
∣∣] ,

∆2
tk,x

(α) = E
[N(α)∑
n=1

∣∣c(Xtk,x,α
τn , ιn−1, ιn)− c(Xtk,x,α̃

τ̃n
, ι̃n−1, ι̃n)

∣∣].
Under (Hl), and by definition of α̃, there exists some positive constant K s.t.

∆1
tk,x

(α) ≤ K
(

sup
s∈[tk,T ]

E
[∣∣Xtk,x,α

s −Xtk,x,α̃
s

∣∣]+ E
[(

sup
s∈[tk,T ]

∣∣Xtk,x,α
s

∣∣+ 1
) ∫ T

tk

1Is 6=Ĩsds
])

.

≤ K
(

sup
s∈[tk,T ]

E
[∣∣Xtk,x,α

s −Xtk,x,α̃
s

∣∣] (3.4)

+
(

1 +
∥∥∥ sup
s∈[tk,T ]

∣∣Xtk,x,α
s

∣∣∥∥∥
2

)(
E
[ ∫ T

tk

1Is 6=Ĩsds
]) 1

2
)
,

by Cauchy-Schwarz inequality. For α ∈ AK̄tk,i(x), we have by Remark 2.1

E
[ ∫ T

tk

1Is 6=Ĩsds
]
≤ hE

[
N(α)

]
≤ ηK̄1(1 + |x|)h,

for some positive constant η > 0. By using this last estimate together with Lemmata 2.1

and 3.2 into (3.4), we obtain the existence of some constant K s.t.

sup
α∈AK̄

tk,i(x)

∆1
tk,x

(α) ≤ K(1 + |x|)h
1
2 , (3.5)

for all (tk, x, i) ∈ Th × Rd × Iq.
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We now turn to the term ∆2
t,x(α). Under (Hl), and by definition of α̃, there exists some

positive constant K s.t.

∆2
tk,x

(α) ≤ KE
[N(α)∑
n=1

∣∣Xtk,x,α
τn −Xtk,x,α̃

τ̃n

∣∣]

≤ K
(
E
[N(α)∑
n=1

∣∣Xtk,x,α
τn −Xtk,x,α

τ̃n

∣∣]+ E
[
N(α) sup

s∈[tk,T ]

∣∣Xtk,x,α
s −Xtk,x,α̃

s

∣∣])

≤ K
(
E
[N(α)∑
n=1

∣∣Xtk,x,α
τn −Xtk,x,α

τ̃n

∣∣]
+
∥∥∥N(α)

∥∥∥
2

∥∥∥ sup
s∈[tk,T ]

∣∣Xtk,x,α
s −Xtk,x,α̃

s

∣∣∥∥∥
2

)
, (3.6)

by Cauchy-Schwarz inequality. For α ∈ AK̄tk,i(x) with Remark 2.1, and from Lemma 3.2,

we get the existence of some positive constant K s.t.∥∥∥N(α)
∥∥∥

2

∥∥∥ sup
s∈[tk,T ]

∣∣Xtk,x,α
s −Xtk,x,α̃

s

∣∣∥∥∥
2
≤ K(1 + |x|)h

1
2 . (3.7)

On the other hand, for any ε ∈ (0, 1], we have from Hölder inequality applied to expectation

and Jensen’s inequality applied to the summation:

E
[N(α)∑
n=1

∣∣Xtk,x,α
τn −Xtk,x,α

τ̃n

∣∣] ≤ (
E
[N(α)∑
n=1

∣∣Xtk,x,α
τn −Xtk,x,α

τ̃n

∣∣] 1
ε
)ε

≤
(
E
[
|N(α)|

1
ε
−1

N(α)∑
n=1

∣∣Xtk,x,α
τn −Xtk,x,α

τ̃n

∣∣ 1
ε

])ε
≤ 2

( n−1∑
`=k

E
[
|N(α)|

1
ε sup
s∈[t`,t`+1]

∣∣Xt,x,α
s −Xt,x,α

t`

∣∣ 1
ε

])ε
≤ 2

hε

∥∥∥N(α)|
∥∥∥

2
ε

max
k≤`≤m−1

∥∥∥ sup
s∈[t`,t`+1]

∣∣Xt,x,α
s −Xt,x,α

t`

∣∣∥∥∥
2
ε

by Cauchy-Schwarz inequality. By Lemma 3.1, this yields the existence of some positive

constant Kε s.t.

E
[N(α)∑
n=1

∣∣Xtk,x,α
τn −Xtk,x,α

τ̃n

∣∣] ≤ Kε(1 + |x|)h
1
2
−ε. (3.8)

By plugging (3.7) and (3.8) into (3.6), we then get

∆2
t,x(α) ≤ Kε(1 + |x|)h

1
2
−ε . (3.9)

Combining (3.5) and (3.9), we obtain with (3.3)

|vi(tk, x)− ṽhi (tk, x)| ≤ Kε(1 + |x|)h
1
2
−ε .
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In the case where c does not depend on the variable x, we have ∆2
t,x(α) = 0, and so by

(3.3), (3.5):

|vi(tk, x)− ṽhi (tk, x)| ≤ K(1 + |x|)h
1
2 .

• For the second term, we have by definition of vhi and ṽhi :

|ṽhi (tk, x)− vhi (tk, x)| ≤ sup
α∈Ah

tk,i

E
[m−1∑
`=k

∫ t`+1

t`

∣∣f(Xt,x,α
s , Is)− f(Xt,x,α

t`
, Is)

∣∣ds],
since Is = It` on [t`, t`+1). Under (Hl), we get

|ṽhi (tk, x)− vhi (tk, x)| ≤ K sup
α∈Ah

tk,i

max
k≤`≤m−1

sup
s∈[t`,t`+1]

E
[∣∣Xt,x,α

s −Xt,x,α
t`

∣∣],
for some positive constant K, and by Lemma 3.1, this shows that

|ṽhi (tk, x)− vhi (tk, x)| ≤ K(1 + |x|)h
1
2 .

2

In a second step, we approximate the continuous-time (controlled) diffusion by a discrete-

time (controlled) Markov chain following an Euler type scheme. For any (tk, x, i) ∈ Th ×
Rd × Iq, α ∈ Ahtk,i, we introduce (X̄h,tk,x,α

t`
)k≤`≤m defined by:

X̄h,tk,x,α
tk

= x, X̄h,tk,x,α
t`+1

= F hIt`
(X̄h,tk,x,α

t`
, ϑ`+1), k ≤ ` ≤ m− 1,

where

F hi (x, ϑk+1) = x+ bi(x)h+ σi(x)
√
h ϑk+1,

and ϑk+1 = (Wtk+1
−Wtk)/

√
h, k = 0, . . . ,m−1, are iid, N (0, Id)-distributed, independent

of Ftk . Similarly as in Lemma 2.1, we have the Lp-estimate:

sup
α∈Ah

tk,i

∥∥∥ max
`=k,...,m

∣∣X̄h,tk,x,α
t`

∣∣∥∥∥
p
≤ Kp(1 + |x|), (3.10)

for some positive constant Kp, not depending on (h, tk, x, i). Moreover, one can also derive

the standard estimate for the Euler scheme, as e.g. in section 10.2 of [10]:

sup
α∈Ah

tk,i

∥∥∥ max
`=k,...,m

∣∣Xtk,x,α
t`

− X̄h,tk,x,α
t`

∣∣∥∥∥
p
≤ Kp(1 + |x|)

√
h. (3.11)

We then associate to the Euler controlled Markov chain, the value functions v̄hi , i ∈ Iq, for

the optimal switching problem:

v̄hi (tk, x) = sup
α∈Ah

tk,i

E
[m−1∑
`=k

f(X̄h,tk,x,α
t`

, It`)h+ g(X̄h,tk,x,α
tm , Itm)

−
N(α)∑
n=1

c(X̄h,tk,x,α
τn , ιn−1, ιn)

]
. (3.12)

The next result provides the error analysis between vhi by v̄hi , and thus of the continuous

time optimal switching problem vi by its Euler discrete-time approximation v̄hi .
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Theorem 3.2 There exists a constant K (not depending on h) such that∣∣vhi (tk, x)− v̄hi (tk, x)
∣∣ ≤ K(1 + |x|)

√
h, (3.13)

for all (tk, x, i) ∈ Th × Rd × Iq.

Remark 3.2 The above theorem combined with Theorem 3.1 gives the rate of conver-

gence for the approximation of the continuous time optimal switching problem by its Euler

discrete-time version: For any ε > 0, there exists a positive constant Kε s.t.

|vi(tk, x)− v̄hi (tk, x)| ≤ Kε(1 + |x|)h
1
2
−ε, (3.14)

for all (tk, x, i) ∈ Th × Rd × Iq. Moreover if the cost functions cij , i, i ∈ Iq, do not depend

on x, then the previous inequality also holds for ε = 0.

Proof of Theorem 3.2.

• Step 1. For (tk, x, i) ∈ Th × Rd × Iq, denote by αh,∗ (resp. ᾱh,∗) the optimal switching

strategy corresponding to vhi (tk, x) (resp. v̄hi (tk, x)). Let us prove that there exists some

constant K, not depending on (tk, x, i, h), such that

E
∣∣N(αh,∗)

∣∣2 + E
∣∣N(ᾱh,∗)

∣∣2 ≤ K(1 + |x|2). (3.15)

We use discrete-time arguments, which are analog to the continuous-time case in the proof

of Proposition 2.1. For αh,∗ optimal strategy to vhi (tk, x) with corresponding indicator

regime Ih,∗ , and to alleviate notations, we denote by Y` = vh
Ih,∗t`

(tk, X
tk,x,α

h,∗

t`
), F` =

f(Xtk,x,α
h,∗

t`
, Ih,∗t` ), c` = c(Xtk,x,α

h,∗

t`
, Ih,∗t`−1

, Ih,∗t` ), for ` = k, . . . ,m. From the estimates on

Xtk,x,α
t`

in Lemma 2.1, we know that

E
[

sup
k≤`≤m

(
|Y`|2 + |F`|2 + |c`|2

)]
≤ K(1 + |x|2), (3.16)

for some positive constant K. Moreover, by the DPP for the value function vhi , we have :

Y` = E [Y`+1|Ft` ] + hF` − c`, ` = k, . . . ,m− 1.

Letting ∆M`+1 := Y`+1 − E[Y`+1|Ft` ], we obtain in particular

m−1∑
`=k

c` = h

m−1∑
`=k

F` −
m−1∑
`=k

∆M`+1 + (Ym − Yk),

and so by (3.16)

E
∣∣∣ m∑
`=k

c`

∣∣∣2 ≤ K(1 + |x|2) + 3 E

(m−1∑
`=k

∆M`+1

)2


= K(1 + |x|2) + 3 E

[
m−1∑
`=k

∆M2
`+1

]
. (3.17)
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Now by writing that

Y 2
m − Y 2

0 =
m−1∑
`=k

(
Y 2
`+1 − Y 2

`

)
=

m−1∑
`=k

(Y`+1 − Y`)(Y`+1 + Y`)

=

m−1∑
`=k

(∆M`+1 − hF` + c`)(2Y` + ∆M`+1 − hF` + c`),

we get

m−1∑
`=k

∆M2
`+1 = Y 2

m − Y 2
0 −

m−1∑
`=0

hF`(hF` − 2Y` − 2cl)− 2
m−1∑
`=0

clYl

−
m−1∑
`=0

∆M`+1(2Y` − 2hF` + 2c`)−
m−1∑
`=0

c2
` .

Since E
[
∆M`+1|Ft`

]
= 0, this shows that

E
[m−1∑
`=k

∆M2
`+1

]
≤ E

[
Y 2
m −

m−1∑
`=0

hF`(hF` − 2Y` − 2c`)− 2
m−1∑
`=0

c`Y`

]
≤ K(1 + |x|2) + 2E

[∣∣∣m−1∑
`=0

c`Y`

∣∣∣], (3.18)

where we used again (3.16). Now since c` ≥ 0,

E
[∣∣∣m−1∑

`=0

c`Y`

∣∣∣] ≤ E
[(m−1∑

`=0

c`

)
sup

k≤`≤m−1
|Y`|
]

≤ εE
[m−1∑
`=k

∆M2
`+1

]
+K

(
1 +

1

ε

)
(1 + |x|2),

for all ε > 0, by (3.16), (3.17) and Cauchy-Schwarz inequality. Hence taking ε small enough

and plugging this estimate into (3.18), we obtain

E
[m−1∑
`=k

∆M2
`+1

]
≤ K(1 + |x|2).

Using (3.17) one more time and recalling that N(αh,∗) ≤ η
∑

` c` for some η > 0 under the

uniformly lower bound condition in (Hc), we thus obtain

E
∣∣N(αh,∗)

∣∣2 ≤ K(1 + |x|2).

The proof for N(ᾱh,∗) is the same, by using estimate (3.10) on
∥∥X̄h,tk,x,α

t`

∥∥
2
.

• Step 2. By Step 1, the supremum in the definitions (3.1) and (3.12) of vhi (tk, x) and

v̄hi (tk, x) can be taken over Ah,Ktk,i (x) =
{
α ∈ Ahtk,i s.t. E|N(α)|2 ≤ K(1 + |x|2)

}
. Now, for
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any α ∈ Ah,Ktk,i (x), we have under (Hl) and by Cauchy-Schwarz inequality

E
[m−1∑
`=k

h
∣∣f(Xtk,x,α

t`
, It`)− f(X̄h,tk,x,α

t`
, It`)

∣∣+
∣∣g(Xtk,x,α

tm , Itm)− g(X̄h,tk,x,α
tm , Itm)

∣∣
+

N(α)∑
n=1

∣∣c(Xtk,x,α
τn , ιn−1, ιn)− c(X̄h,tk,x,α

τn , ιn−1, ιn)
∣∣]

≤ KE
[
(1 +N(α))

(
sup

k≤`≤m

∣∣Xtk,x,α
t`

− X̄h,tk,x,α
t`

∣∣)]
≤ K(1 + |x|)

∥∥∥ sup
k≤`≤m

∣∣Xtk,x,α
t`

− X̄h,tk,x,α
t`

∣∣∥∥∥
2

≤ K(1 + |x|2)
√
h, (3.19)

by (3.11). Taking the supremum over α ∈ Ah,Ktk,i (x) into (3.19), this shows that∣∣vhi (tk, x)− v̄hi (tk, x)
∣∣ ≤ K(1 + |x|2)

√
h.

2

4 Approximation schemes by optimal quantization

In this section, for a fixed time discretization step h, we focus on a computational appro-

ximation for the value functions v̄hi , i ∈ Iq, defined in (3.12). To alleviate notations, we

shall often omit the dependence on h in the superscripts, and write e.g. v̄i = v̄hi . The

corresponding dynamic programming relation for v̄i is written in the backward induction:

v̄i(tm, x) = gi(x),

v̄i(tk, x) = max
{
E
[
v̄i(tk+1, X̄

tk,x,i
tk+1

)
]

+ fi(x)h , max
j 6=i

[v̄j(tk, x)− cij(x)]
}
,

for k = 0, . . . ,m− 1, (i, x) ∈ Iq × Rd, where X̄tk,x,i is the solution to the Euler scheme:

X̄tk,x,i
tk+1

= F hi (x, ϑk+1) := x+ bi(x)h+ σi(x)
√
h ϑk+1.

Observe that under the triangular condition on the switching costs cij in (Hc), these

backward relations can be written as an explicit discrete-time scheme:

v̄i(tm, x) = gi(x) (4.1)

v̄i(tk, x) = max
j∈Iq

{
E
[
v̄j(tk+1, X̄

tk,x,j
tk+1

)
]

+ fj(x)h− cij(x)
}
, (4.2)

for k = 0, . . . ,m − 1, (i, x) ∈ Iq × Rd. Next, the practical implementation for this scheme

requires a computational approximation of the expectations arising in the above dynamic

programming formulae, and a space discretization for the state process X valued in Rd.
We shall propose two numerical approximations schemes by optimal quantization methods,

the second one in the particular case where the state process X is not controlled by the

switching control.
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4.1 A Markovian quantization method

Let X be a bounded lattice grid on Rd with step δ/d and size R, namely X = (δ/d)Zd ∩
B(0, R) = {x ∈ Rd : x = (δ/d)z for some z ∈ Zd, and |x| ≤ R}. We then denote by ProjX
the projection on the grid X according to the closest neighbour rule, which satisfies

|x− ProjX(x)| ≤ max(|x| −R, 0) + δ, ∀x ∈ Rd. (4.3)

At each time step tk ∈ Th, and point space-grid x ∈ X, we have to compute in (4.2) expecta-

tions in the form E
[
ϕ(X̄tk,x,i

tk+1
)
]
, for ϕ(.) = v̄hi (tk+1, .), i ∈ Iq. We shall then use an optimal

quantization for the Gaussian random variable ϑk+1, which consists in approximating the

distribution of ϑ; N (0, Id) by the discrete law of a random variable ϑ̂ of support N points

wl, l = 1, . . . , N , in Rd, and defined as the projection of ϑ on the grid {w1, . . . , wN} follow-

ing the closest neighbor rule. The grid {w1, . . . , wN} is optimized in order to minimize the

distorsion error, i.e. the quadratic L2-norm
∥∥ϑ − ϑ̂∥∥

2
. This optimal grid and the associ-

ated weights {π1, . . . , πN} are downloaded from the website: “http://www.quantize.maths-

fi.com/downloads”. We refer to the survey article [13] for more details on the theoretical

and computational aspects of optimal quantization methods. In the vein of [14], we intro-

duce the quantized Euler scheme:

X̂tk,x,i
tk+1

= ProjX(F hi (x, ϑ̂)),

and define the value functions v̂i on Tm × X, i ∈ Iq in backward induction by

v̂i(tm, x) = gi(x)

v̂i(tk, x) = max
j∈Iq

{
E
[
v̂j(tk+1, X̂

tk,x,j
tk+1

)
]

+ fj(x)h− cij(x)
}
, k = 0, . . . ,m− 1.

This numerical scheme can be computed explicitly according to the following recursive

algorithm:

v̂i(tm, x) = gi(x), (x, i) ∈ X× Iq

v̂i(tk, x) = max
j∈Iq

[ N∑
l=1

πl v̂j
(
tk+1,ProjX(F hj (x,wl))

)
+ fj(x)h− cij(x)

]
, (x, i) ∈ X× Iq,

for k = 0, . . . ,m−1. At each time step, we need to make O(N) computations for each point

of the grid X. Therefore, the global complexity of the algorithm is of order O(mN(R/δ)d).

The main result of this paragraph is to provide an error analysis and rate of convergence

for the approximation of v̄i by v̂i.

Theorem 4.1 There exists a constant K (not depending on h) such that∣∣v̄i(tk, x)− v̂i(tk, x)
∣∣ ≤ K exp

(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
2

)(
1 + |x|+ δ

h

)
[ δ
h

+ h−1/2
∥∥ϑ− ϑ̂∥∥

2

(
1 + |x|+ δ

h

)
+

1

Rh
exp

(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
4

)(
1 + |x|2 + (

δ

h
)2
)]
,
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for all (tk, x, i) ∈ Th × X × Iq. In the case where the switching costs cij do not depend on

x, the above estimation is stengthened into:∣∣v̄i(tk, x)− v̂i(tk, x)
∣∣ ≤ K

[
h−1/2

∥∥ϑ− ϑ̂∥∥
2

exp
(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
2

)(
1 + |x|+ δ

h

)
+
δ

h
+

1

Rh
exp

(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
4

)(
1 + |x|2 +

( δ
h

)2)]
.

Remark 4.1 The estimation in Theorem 4.1 consists of error terms related to

• the space discretization parameters δ, R, which have to be chosen s.t. δ/h and 1/Rh

go to zero.

• the quantization error
∥∥ϑ− ϑ̂∥∥

p
of the normal distribution N (0, Id), which converges

to zero at a rate N
1
d , where N is the number of grid points chosen s.t. h

−1
2 N

−1
d goes

to zero.

By combining with the discrete-time approximation error (3.14), and by choosing grid

parameters δ, 1/R of order h
3
2 , and a number of points N of order 1/hd, we see that the

error estimate between the value function of the continuous-time optimal switching problem

and its approximation by Markovian quantization is of order h
1
2 . With these values of the

parameters, we then see that the complexity of this Markovian quantization algorithm is

of order O(1/h4d+1).

Let us now focus on the proof of Theorem 4.1. First, notice from the dynamic pro-

gramming principle that the value functions v̂i, i ∈ Iq, admit the Markov control problem

representation:

v̂i(tk, x) = sup
α∈Ah

tk,i

E
[m−1∑
`=k

f(X̂tk,x,α
t`

, It`)h+ g(X̂tk,x,α
tm , Itm)

−
N(α)∑
n=1

c(X̂tk,x,α
τn , ιn−1, ιn)

]
, (4.4)

where X̂tk,x,α is defined by

X̂tk,x,α
tk

= x, X̂tk,x,α
t`+1

= ProjX
(
F hIt`

(X̂tk,x,α
t`

, ϑ̂`+1)
)
, k ≤ ` ≤ m− 1,

for α ∈ Ahtk,i, and ϑ̂k+1, k = 0, . . . ,m − 1, are iid, ϑ̂-distributed, and independent of Ftk .

We first prove several estimates on X̂tk,x,α.

Lemma 4.1 For each p ≥ 1 there exists a constant Kp (not depending on h) such that

sup
α∈Ah

tk,i,k≤`≤m

∥∥∥X̂tk,x,α
t`

∥∥∥
p

+ sup
α∈Ah

tk,i,k≤`≤m−1

∥∥∥F hIt`(X̂tk,x,α
t`

, ϑ̂k+1

)∥∥∥
p

(4.5)

≤ Kp exp
(
Kph

−1/2
∥∥ϑ− ϑ̂∥∥

p

)(
1 + |x|+ δ

h

)
,

for all (tk, x, i) ∈ Th × X× Iq.
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Proof. We fix (tk, x, i) ∈ Th × X × Iq, α ∈ Ahtk,i, and denote X̂t` = X̂tk,x,α
t`

, k ≤ ` ≤ m.

First by standard estimates on solutions to SDEs, we have∥∥∥F hIt` (X̂t` , ϑ`+1)
∥∥∥
p
≤ eKph

∥∥∥X̂t`

∥∥∥
p

+Kph. (4.6)

Then, by using the linear growth property of σ and the fact that ϑ̂`+1, ϑ`+1 are independent

of X̂t` , we obtain∥∥∥F hIt` (X̂t` , ϑ`+1)− F hIt` (X̂t` , ϑ̂`+1)
∥∥∥
p
≤ Kh1/2

(
1 +

∥∥∥X̂t`

∥∥∥
p

)∥∥ϑ− ϑ̂∥∥
p
. (4.7)

Combining (4.6),(4.7) and the fact that |ProjX(y)| ≤ |y|+ δ for all y ∈ Rd, we get∥∥∥X̂t`+1

∥∥∥
p
≤ δ + eKph

∥∥∥X̂t`

∥∥∥
p

+Kph+Kh1/2

(∥∥∥X̂t`

∥∥∥
p

+ 1

)∥∥ϑ− ϑ̂∥∥
p

≤ eKph(1 +Kh1/2
∥∥ϑ− ϑ̂∥∥

p
)
∥∥∥X̂t`

∥∥∥
p

+Kph+ δ +Kh1/2
∥∥ϑ− ϑ̂∥∥

p
.

By induction, recalling that h = T
m , and since

(
1 + y

m

)m ≤ ey for all y ≥ 0, we obtain∥∥∥X̂t`

∥∥∥
p
≤ Kp exp

(
Kph

−1/2
∥∥ϑ− ϑ̂∥∥

p

)(
1 + |x|+ δ

h
+ h−1/2

∥∥ϑ− ϑ̂∥∥
p

)
≤ Kp exp

(
K ′ph

−1/2
∥∥ϑ− ϑ̂∥∥

p

)(
1 + |x|+ δ

h

)
,

for all k ≤ ` ≤ m. The estimate for F h(X̂t` , ϑ`+1) then follows from (4.6). 2

Lemma 4.2 There exists some constant K (not depending on h) such that

sup
α∈Ah

tk,i

∥∥∥ sup
k≤`≤m

∣∣X̂tk,x,α
t`

− X̄tk,x,α
t`

∣∣∥∥∥
2

≤ K
[
h−1/2

∥∥ϑ− ϑ̂∥∥
2

exp
(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
2

)(
1 + |x|+ δ

h

)
+
δ

h
+

1

Rh
exp

(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
4

)(
1 + |x|2 +

( δ
h

)2)]
, (4.8)

for all (tk, x, i) ∈ Th × X× Iq.

Proof. As before we fix (tk, x, i), α and omit the dependence on (tk, x, i, α) in X̂t` . Let us

first show an estimate on
∥∥∥X̂t`+1

− X̄t`+1

∥∥∥
2
. For k ≤ ` ≤ m− 1, we get∥∥∥X̂t`+1

− X̄t`+1

∥∥∥
2
≤

∥∥∥X̂t`+1
− F hIt` (X̂t` , ϑ̂`+1)

∥∥∥
2

+
∥∥∥F hIt` (X̂t` , ϑ̂`+1)− F hIt` (X̂t` , ϑ`+1)

∥∥∥
2

+
∥∥∥F hIt` (X̂t` , ϑ`+1)− F hIt` (X̄t` , ϑ`+1)

∥∥∥
2
. (4.9)

On the other hand, since

∣∣y − ProjX(y)
∣∣ ≤ δ + |y|1{|y|≥R} ≤ δ +

|y|2

R
,
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by inequality (4.3), we have

∥∥∥X̂t`+1
− F hIt` (X̂t` , ϑ̂`+1)

∥∥∥
2
≤ δ +

∥∥∥X̂t`

∥∥∥2

4

R
. (4.10)

Furthermore by standard estimates for the Euler scheme (see e.g. Lemma A.1 in [14]), we

have ∥∥∥F hIt` (X̂t` , ϑ`+1)− F hIt` (X̄t` , ϑ`+1)
∥∥∥

2
≤ (1 +Kh)

∥∥∥X̂t` − X̄t`

∥∥∥
2
.

Plugging these last two inequalities and (4.7) into (4.9), we get :

∥∥∥X̂t`+1
− X̄t`+1

∥∥∥
2
≤ (1 +Kh)

∥∥∥X̂t` − X̄t`

∥∥∥
2

+Kh1/2
(∥∥∥X̂t`

∥∥∥
2

+ 1
)∥∥ϑ− ϑ̂∥∥

2
+ δ +

∥∥∥X̂t`

∥∥∥2

4

R
.

Finally since X̂tk = X̄tk = x, we obtain by induction, and using the estimates (4.5) on∥∥∥X̂t`

∥∥∥
4
:

∥∥∥X̂t` − X̄t`

∥∥∥
2
≤ K

[
h−1/2

∥∥ϑ− ϑ̂∥∥
2

exp
(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
2

)(
1 + |x|+ δ

h

)
+
δ

h

+
1

Rh
exp

(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
4

)(
1 + |x|2 +

( δ
h

)2)]
, (4.11)

for all k ≤ ` ≤ m. Now by definition of X̂tk , X̄tk , we may write for k ≤ ` ≤ m− 1:

X̂t`+1
− X̄t`+1

= (X̂t` − X̄t`) + h
(
b(X̂t` , It`)− b(X̄t` , It`)

)
+
√
h
(
σ(X̂t` , It`)ϑ̂`+1 − σ(X̄t` , It`)ϑ`+1

)
+ ProjX

(
F hIt`

(
X̂t` , ϑ̂`+1)

)
− F hIt`

(
X̂t` , ϑ̂`+1

)
,

Since X̂tk = X̄tk (= x), we obtain by induction:∥∥∥∥∥ sup
k≤`≤m

∣∣∣X̂t` − X̄t`

∣∣∣∥∥∥∥∥
2

≤ h
m−1∑
`=k

∥∥∥b(X̂t` , It`)− b(X̄t` , It`)
∥∥∥

2

+
√
h
∥∥∥ sup
k≤`≤m

∣∣∑
r≤`

σ(X̂tr , Itr)ϑ̂r+1 − σ(X̄tr , Itr)ϑr+1

∣∣∥∥∥
2

+

m−1∑
`=k

∥∥∥ProjX
(
F hIt`

(X̂t` , ϑ̂`+1)
)
− F hIt`

(
X̂t` , ϑ̂`+1

)∥∥∥
2
. (4.12)

We now bound each of the three terms in the right hand side of (4.12). First, by the

Lipschitz property of b and (4.11), we have

h
m−1∑
`=k

∥∥b(X̂t` , It`)− b(X̄t` , It`)
∥∥

2

≤ K
[
h−1/2

∥∥ϑ− ϑ̂∥∥
2

exp
(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
2

)(
1 + |x|+ δ

h

)
+
δ

h
+

1

Rh
exp

(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
4

)(
1 + |x|2 +

( δ
h

)2)]
.
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Next, recalling that ϑ̂`+1 is independent of Ft` , with distribution law ϑ̂, and since ϑ̂ is an

optimal L2-quantizer of ϑ, it follows that E[ϑ̂`+1|Ft` ] = E[ϑ̂] = E[ϑ] = 0. Thus, the process

(
∑

r≤` σ(X̂tr , Itr)ϑ̂r+1 − σ(X̄tr , Itr)ϑr+1)` is a Ft`-martingale, and from Doob’s inequality,

we have: ∥∥∥ sup
k≤`≤m

∣∣∑
r≤`

σ(X̂tr , Itr)ϑ̂r+1 − σ(X̄tr , Itr)ϑr+1

∣∣∥∥∥
2

≤ K
(
E
[m−1∑
`=k

∣∣σ(X̂t` , It`)ϑ̂`+1 − σ(X̄t` , It`)ϑ`+1

∣∣2]) 1
2
.

By writing from the Lipschitz condition on σi that∣∣σ(X̂t` , It`)ϑ̂`+1 − σ(X̄t` , It`)ϑ`+1

∣∣2 ≤ K
(∣∣X̂t` − X̄t`

∣∣2∣∣ϑ`+1

∣∣2
+
(
1 +

∣∣X̂t`

∣∣2)∣∣ϑ`+1 − ϑ̂`+1

∣∣2),
and since ϑ`+1, ϑ̂`+1 are independent of Ft` , we then obtain

√
h
∥∥∥ sup
k≤`≤m

∣∣∑
r≤`

σ(X̂tr , Itr)ϑ̂r+1 − σ(X̄tr , Itr)ϑr+1

∣∣∥∥∥
2

≤ K sup
k≤`≤m−1

[∥∥X̂t` − X̄t`

∥∥
2

+
(
1 +

∥∥X̂t`

∥∥
2

)∥∥ϑ− ϑ̂∥∥
2

]
≤ K

[
h−1/2

∥∥ϑ− ϑ̂∥∥
2

exp
(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
2

)(
1 + |x|+ δ

h

)
+
δ

h
+

1

Rh
exp

(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
4

)(
1 + |x|2 +

( δ
h

)2)]
,

where we used the estimates (4.5) and (4.11). Finally the third term in (4.12) is bounded

as before by (4.10). 2

Proof of Theorem 4.1. For (tk, x, i) ∈ Th × X× Iq, denote by α̂∗ the optimal switching

strategy corresponding to v̂i(tk, x). Then, similarly as in the derivation of (3.15), by using

the estimation (4.5) for
∥∥X̂tk,x,α

t`

∥∥
2
, we get the existence of some constant K, not depending

on (tk, x, i, h), such that

E
∣∣N(α̂∗)

∣∣2 ≤ K exp
(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
2

)(
1 + |x|2 +

δ2

h2

)
.

Therefore, the supremum in the representation (3.1) of v̂i(tk, x) can be taken over the subset

Âh,Ktk,i (x) =
{
α ∈ Ahtk,i s.t. E|N(α)|2 ≤ K exp

(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
2

)(
1 + |x|2 + δ2

h2

)}
. Then,
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for α ∈ Âh,Ktk,i (x), we have under (Hl) and by Cauchy-Schwarz inequality

E
[m−1∑
`=k

h
∣∣f(X̄tk,x,α

t`
, It`)− f(X̂tk,x,α

t`
, It`)

∣∣+
∣∣g(X̄tk,x,α

tm , Itm)− g(X̂tk,x,α
tm , Itm)

∣∣
+

N(α)∑
n=1

∣∣c(X̄tk,x,α
τn , ιn−1, ιn)− c(X̂h,tk,x,α

τn , ιn−1, ιn)
∣∣]

≤ KE
[
(1 +N(α))

(
sup

k≤`≤m

∣∣X̄tk,x,α
t`

− X̂tk,x,α
t`

∣∣)]
≤ K exp

(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
2

) (
1 + |x|+ δ

h

)∥∥∥ sup
k≤`≤m

∣∣X̄tk,x,α
t`

− X̂tk,x,α
t`

∣∣∥∥∥
2

≤ K exp
(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
2

)(
1 + |x|+ δ

h

)[ δ
h

+ h−1/2
∥∥ϑ− ϑ̂∥∥

2

(
1 + |x|+ δ

h

)
+

1

Rh
exp

(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
4

)(
1 + |x|2 +

( δ
h

)2)]
, (4.13)

by Lemma 4.2. Taking the supremum over α ∈ Âh,Ktk,i (x) in the above inequality, we obtain

an estimate for |v̄i(tk, x) − v̂i(tk, x)| with an upper bound given by the r.h.s. of (4.13),

which gives the required result.

Finally, notice that in the special case where the switching cost functions cij do not

depend on x, we have

∣∣v̄i(tk, x)− v̂i(tk, x)
∣∣ ≤ sup

α∈Ah
tk,i

E
[m−1∑
`=k

h
∣∣f(X̄tk,x,α

t`
, It`)− f(X̂tk,x,α

t`
, It`)

∣∣
+
∣∣g(X̄tk,x,α

tm , Itm)− g(X̂tk,x,α
tm , Itm)

∣∣]
≤ K sup

α∈Ah
tk,i,k≤`≤m

E
∣∣X̄tk,x,α

t`
− X̂tk,x,α

t`

∣∣
≤ K

[
h−1/2

∥∥ϑ− ϑ̂∥∥
2

exp
(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
2

)(
1 + |x|+ δ

h

)
+
δ

h
+

1

Rh
exp

(
Kh−1/2

∥∥ϑ− ϑ̂∥∥
4

)(
1 + |x|2 +

( δ
h

)2)]
,

by the estimate in Lemma 4.2. 2

4.2 Marginal quantization in the uncontrolled diffusion case

In this paragraph, we consider the special case where the diffusion X is not controlled, i.e.

bi = b, σi = σ. The Euler scheme for X, denoted by X̄, is given by:

X̄0 = X0, X̄tk+1
= F h(X̄tk , ϑk+1)

:= X̄tk + b(X̄tk)h+ σ(X̄tk)
√
h ϑk+1, k = 0, . . . ,m− 1,

where ϑk+1 = (Wtk+1
−Wtk)/

√
h, k = 0, . . . ,m−1, are iid, N (0, Id)-distributed, independent

of Ftk . Let us recall the well-known estimate: for any p ≥ 1, there exists some Kp s.t.∥∥X̄tk

∥∥
p
≤ Kp

∥∥X0

∥∥
p
. (4.14)
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Notice that the backward dynamic programming formulae (4.1)-(4.2) for v̄i can be written

in this case as:

v̄i(tm, .) = gi(.), i ∈ Iq
v̄i(tk, .) = max

j∈Iq
[P hv̄j(tk+1, .) + hfj − cij ]. (4.15)

Here P h is the probability transition kernel of the Markov chain X̄, given by:

P hϕ(x) = E
[
ϕ(X̄tk+1

)|X̄tk = x
]

= E[ϕ(F h(x, ϑ))], (4.16)

where ϑ is N (0, Id)-distributed. Let us next consider the family of discrete-time processes

(Ȳ i
tk

)k=0,...,m, i ∈ Iq, defined by:

Ȳ i
tk

= v̄i(tk, X̄tk), k = 0, . . . ,m, i ∈ Iq.

Remark 4.2 By the Markov property of the Euler scheme X̄ w.r.t. (Ftk)k, we see that

(Ȳ i
tk

)k=0,...,m, i ∈ Iq, satisfy the backward induction:

Ȳ i
tm = gi(X̄tm) = gi(X̄T ), i ∈ Iq

Ȳ i
tk

= max
j∈Iq

{
E
[
Ȳ j
tk+1

∣∣Ftk]+ hfj(X̄tk)− cij(X̄tk)
}
, k = 0, . . . ,m− 1,

and is represented as

Ȳ i
tk

= ess sup
α∈Ah

tk,i

E
[m−1∑
`=k

f(X̄t` , It`)h+ g(X̄tm , Itm)−
N(α)∑
n=1

c(X̄τn , ιn−1, ιn)
∣∣∣Ftk].

On the other hand, the continuous-time optimal switching problem (2.4) admits a repre-

sentation in terms of the following reflected Backward Stochastic Differential Equations

(BSDE):

Y i
t = gi(XT ) +

∫ T

t
f(Xs)ds−

∫ T

t
ZisdWs +Ki

T −Ki
t , i ∈ Iq, 0 ≤ t ≤ T,

Y i
t ≥ max

j 6=i
[Y j
t − cij(Xt)] and

∫ T

0

(
Y i
t −max

j 6=i
[Y j
t − cij(Xt)]

)
dKi

t = 0. (4.17)

We know from [6], [9] or [8] that there exists a unique solution (Y,Z,K) = (Y i, Zi,Ki)i∈Iq
solution to (4.17) with Y ∈ S2(Rq), the set of adapted continuous processes valued in Rq

s.t. E[sup0≤t≤T |Yt|2] < ∞, Z ∈ M2(Rq), the set of predictable processes valued in Rq s.t.

E[
∫ T

0 |Zt|
2dt] < ∞, and Ki ∈ S2(R), Ki

0 = 0, Ki is nondecreasing. Moreover, we have

Y i
t = vi(t,Xt), i ∈ Iq,

= ess sup
α∈At,i

E
[ ∫ T

t
f(Xs, Is)ds+ g(XT , IT )−

N(α)∑
n=1

c(Xτn , ιn−1, ιn)
∣∣∣Ft], 0 ≤ t ≤ T.

We recall from [5] the error estimation: for any ε > 0, there exists some constant Kε s.t.

max
k=0,...,m

∥∥∥Y i
tk
− Ȳ i

tk

∥∥∥
2
≤ Kε

∥∥X0

∥∥
2
h

1
2
−ε,

for all i ∈ Iq, and ε can be chosen equal to zero when the switching costs cij do not depend

on x.
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We propose now an optimal quantization method in the vein of [1] for optimal stopping

problems, for a computational approximation of (Ȳ i
tk

)k=0,...,m. This is based on results

about optimal quantization of each marginal distribution of the Markov chain (X̄tk)0≤k≤m.

Let us recall the construction. For each time step k = 0, . . . ,m, we are given a grid Γk
= {x1

k, . . . , x
Nk
k } of Nk points in Rd, and we define the quantizer X̂k = Projk(X̄tk) of X̄tk

where Projk denotes a closest neighbour projection on Γk. For Nk being fixed, the grid Γk
is said to be Lp-optimal if it minimizes the Lp-quantization error: ‖X̄tk − Projk(X̄tk)‖p .

Optimal grids Γk are produced by a stochastic recursive algorithm, called Competitive

Learning Vector Quantization (or also Kohonen Algorithm), and relying on Monte-Carlo

simulations of X̄tk , k = 0, . . . ,m. We refer to [13] for details about the CLVQ algorithm.

We also compute the transition weights

πll
′

k = P[X̂k+1 = xl
′
k+1|X̂k = xlk] =

P
[
(X̄tk+1

, X̄tk) ∈ Cl′(Γk+1)× Cl(Γk)
]

P
[
X̄tk ∈ Cl(Γk)

] ,

where Cl(Γk) ⊂ {x ∈ Rd : |x−xlk| = miny∈Γk
|x−y|}, l = 1, . . . , Nk, is a Voronoi tesselation

of Γk. These weights can be computed either during the CLVQ phase, or by a regular

Monte-Carlo simulation once the grids Γk are settled. The associated discrete probability

transition P̂k from X̂k to X̂k+1, k = 0, . . . ,m− 1, is given by:

P̂kϕ(xlk) :=

Nk+1∑
l′=1

πll
′

k ϕ(xl
′
k+1) = E

[
ϕ(X̂k+1)

∣∣X̂k = xlk
]
.

One then defines by backward induction the sequence of Rq-valued functions v̂k = (v̂ik)i∈Iq
computed explicitly on Γk, k = 0, . . . ,m, by the quantization tree algorithm:

v̂im = gi, i ∈ Iq,
v̂ik = max

j∈Iq

[
P̂kv̂

j
k+1 + hfj − cij

]
, k = 0, . . . ,m− 1. (4.18)

The discrete-time processes (Ȳ i
tk

)k=0,...,m, i ∈ Iq, are then approximated by the quantized

processes (Ŷ i
k )k=0,...,m, i ∈ Iq defined by

Ŷ i
k = v̂ik(X̂k), k = 0, . . . ,m, i ∈ Iq.

The rest of this section is devoted to the error analysis between Ȳ i and Ŷ i. The analysis

follows arguments as in [2] for optimal stopping problems, but has to be slightly modified

since the functions v̄i(tk, .) are not Lipschitz in general when the switching costs depend on

x. Let us introduce the subset LLip(Rd) of measurable functions ϕ on Rd satisfying:

|ϕ(x)− ϕ(y)| ≤ K(1 + |x|+ |y|)|x− y|, ∀x, y ∈ Rd,

for some positive constant K, and denote by

[ϕ]LLip = sup
x,y∈Rd,x 6=y

|ϕ(x)− ϕ(y)|
(1 + |x|+ |y|)|x− y|

.
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Lemma 4.3 The functions v̄i(tk, .), k = 0, . . . ,m, i ∈ Iq, lie in LLip(Rd), and [v̄i(tk, .)]LLip

is bounded by a constant not depending on (k, i, h).

Proof. We set v̄ik = v̄i(tk, .). From the representation (3.12), we have

v̄ik(x) = sup
α∈Ah

tk,i

E
[m−1∑
`=k

f(X̄tk,x
t`

, It`)h+ g(X̄tk,x
tm , Itm)−

N(α)∑
n=1

c(X̄tk,x
τn , ιn−1, ιn)

]
,

where X̄tk,x is the solution to the Euler scheme starting from x at time tk. From (3.15),

notice that in the above representation for v̄ik(x), one can restrict the supremum to Ah,Ktk,i (x)

=
{
α ∈ Ahtk,i s.t. E|N(α)|2 ≤ K(1 + |x|2)

}
for some positive constant K not depending

on (tk, x, i, h). Then, as in the proof of Theorem 4.1, we have for any x, y ∈ Rd, and α ∈
Ah,Ktk,i (x) ∪ Ah,Ktk,i (y),

E
[m−1∑
`=k

h
∣∣f(X̄tk,x

t`
, It`)− f(X̄tk,y

t`
, It`)

∣∣+
∣∣g(X̄tk,x

tm , Itm)− g(X̄tk,y
tm , Itm)

∣∣
+

N(α)∑
n=1

∣∣c(X̄tk,x
τn , ιn−1, ιn)− c(X̄tk,x

τn , ιn−1, ιn)
∣∣]

≤ K
(
1 +

∥∥N(α)
∥∥

2

)∥∥∥ sup
k≤`≤m

∣∣X̄tk,x
t`
− X̄tk,y

t`

∣∣∥∥∥
2

≤ K(1 + |x|+ |y|)|x− y|,

by standard Lipschitz estimates on the Euler scheme. By taking the supremum overAh,Ktk,i (x)

∪ Ah,Ktk,i (y) in the above inequality, this shows that

|v̄ik(x)− v̄ik(y)| ≤ K(1 + |x|+ |y|)|x− y|,

i.e. v̄ik ∈ LLip(Rd) with [v̄ik]LLip ≤ K. 2

The next Lemma shows that the probability transition kernel of the Euler scheme

preserves the growth linear Lipschitz property.

Lemma 4.4 For any ϕ ∈ LLip(Rd), the function P hϕ also lies in LLip(Rd), and there

exists some constant K, not depending on h, such that

[P hϕ]LLip ≤
√

3(1 +O(h))[ϕ]LLip ,

where O(h) denotes any function s.t. O(h)/h is bounded when h goes to zero.

Proof. From (4.16) and Cauchy-Schwarz inequality, we have for any x, y ∈ Rd:

|P hϕ(x)− P hϕ(y)|

≤
(
E
∣∣ϕ(F h(x, ϑ))− ϕ(F h(y, ϑ))

∣∣2)1/2

≤ [ϕ]GLip

(
E
∣∣(1 + |F h(x, ϑ)|+ |F h(y, ϑ)|)2

∣∣F h(x, ϑ)− F h(y, ϑ)
∣∣2)1/2

≤
√

3[ϕ]GLip

(
E
[
(1 + |F h(x, ϑ)|2 + |F h(y, ϑ)|2)|F h(x, ϑ)− F h(y, ϑ)|2

]) 1
2
, (4.19)
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where we used the relation (a+b+c)2 ≤ 3(a2+b2+c2). Since ϑ has a symmetric distribution,

we have

E
[(

1 + |F h(x, ϑ)|2 + |F h(y, ϑ)|2
)
|F h(x, ϑ)− F h(y, ϑ)|2

]
=

1

2
E
[(

1 + |F h(x, ϑ)|2 + |F h(y, ϑ)|2
)
|F h(x, ϑ)− F h(y, ϑ)|2

+
(
1 + |F h(x,−ϑ)|2 + |F h(y,−ϑ)|2

)
|F h(x,−ϑ)− F h(y,−ϑ)|2

]
A straightforward calculation gives

1

2

[(
1 + |F h(x, ϑ)|2 + |F h(y, ϑ)|2

)
|F h(x, ϑ)− F h(y, ϑ)|2

+
(
1 + |F h(x,−ϑ)|2 + |F h(y,−ϑ)|2

)
|F h(x,−ϑ)− F h(y,−ϑ)|2

]
=

(
1 + |x+ hb(x)|2 + |y + hb(y)|2 + h|σ(x)ϑ|2 + h|σ(y)ϑ|2

)∣∣x− y + h(b(x)− b(y))
∣∣2

+ h|(σ(x)− σ(y))ϑ|2
(
|x+ hb(x)|2 + |y + hb(y)|2

)
+ 4h

[(
x+ hb(x)|σ(x)ϑ

)
+
(
y + hb(y)|σ(y)ϑ

)](
x− y + h(b(x)− b(y))|(σ(x)− σ(y))ϑ

)
+ h2(|σ(x)ϑ|2 + |σ(y)ϑ|2)|(σ(x)− σ(y))ϑ|2.

By Lipschitz continuity of b and σ, and the fact that E|ϑ|4 < ∞, we deduce that

E
[
(1 + |F h(x, ϑ)|2 + |F h(y, ϑ)|2)|F h(x, ϑ)− F h(y, ϑ)|2

]
≤ (1 +O(h))(1 + |x|2 + |y|2)|x− y|2.

Plugging this last inequality into (4.19) shows the required result. 2

We now pass to the main result of this section by providing some a priori estimates for

‖Ȳtk − Ŷk‖ in terms of the quantization error ‖X̄tk − X̂k‖.

Theorem 4.2 There exists some positive constant K, not depending on h, such that

max
i∈Iq

∥∥Ȳ i
tk
− Ŷ i

k

∥∥
p
≤ K

m∑
`=k

(1 + ‖X0‖r + ‖X̂`‖r)
∥∥X̄t` − X̂`

∥∥
s
, (4.20)

for any k = 0, . . . ,m, and (p, r, s) ∈ (1,∞) s.t. 1
p = 1

r + 1
s .

Proof. We set v̄ik = v̄i(tk, .), and by misuse of notations, we also set Ȳ i
k = Ȳ i

tk
= v̄ik(X̄k).

From the recursive induction (4.15) (resp. (4.18)) on v̄ik (resp. v̂ik), and the trivial inequality

|maxj āj −maxj âj | ≤ maxj |āj − âj |, we have for all i ∈ Iq:

|Ȳ i
k − Ŷ i

k | = |v̄ik(X̄tk)− v̂ik(X̂k)|
≤ max

j∈Iq

∣∣[P hv̄jk+1(X̄tk) + hfj(X̄tk)− cij(X̄tk)
]
−
[
P̂kv̂

j
k+1(X̂k) + hfj(X̂k)− cij(X̂k)

]∣∣
≤ max

j∈Iq

[∣∣P hv̄jk+1(X̄tk)− P̂kv̂jk+1(X̂k)
∣∣+ h

∣∣fj(X̄tk)− fj(X̂k)
∣∣+
∣∣cij(X̄tk)− cij(X̂k)

∣∣]
≤ K

∣∣X̄tk − X̂k

∣∣+ max
j∈Iq

∣∣P hv̄jk+1(X̄tk)− P̂kv̂jk+1(X̂k)
∣∣
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by the Lipschitz property of fj and cij , and so

max
i∈Iq

∥∥∥Ȳ i
k − Ŷ i

k

∥∥∥
p
≤ K

∥∥∥X̄tk − X̂k

∥∥∥
p

+ max
i∈Iq

∥∥∥P hv̄ik+1(X̄tk)− P̂kv̂ik+1(X̂k)
∥∥∥
p

(4.21)

Writing Êk for the conditional expectation w.r.t. X̂k, we have for any i ∈ Iq∣∣P hv̄ik+1(X̄tk)− P̂kv̂ik+1(X̂k)
∣∣

≤
∣∣P hv̄ik+1(X̄tk)− P hv̄ik+1(X̂k)

∣∣+
∣∣P hv̄ik+1(X̂k)− Êk[P hvik+1(X̄tk)]

∣∣
+
∣∣Êk[P hv̄ik+1(X̄tk)]− P̂kv̂ik+1(X̂k)

∣∣
=

∣∣P hv̄ik+1(X̄tk)− P hv̄ik+1(X̂k)
∣∣+
∣∣Êk[P hv̄ik+1(X̂k)− P hv̄ik+1(X̄tk)]

∣∣
+
∣∣Êk[Ȳ i

k+1 − Ŷ i
k+1]

∣∣.
Since Êk is a Lp-contraction, we then obtain∥∥∥P hv̄ik+1(X̄tk)− P̂kv̂ik+1(X̂k)

∥∥∥
p

≤ 2
∥∥∥P hv̄ik+1(X̄tk)− P hv̄ik+1(X̂k)

∥∥∥
p

+
∥∥∥Ȳ i

k+1 − Ŷ i
k+1

∥∥∥
p

≤ K(1 +O(h))
∥∥∥(1 +

∣∣X̄tk

∣∣+
∣∣X̂k

∣∣)∣∣X̄tk − X̂k

∣∣∥∥∥
p

+
∥∥∥Ȳ i

k+1 − Ŷ i
k+1

∥∥∥
p

≤ K(1 +O(h))
(
1 +

∥∥X0

∥∥
r

+
∥∥X̂k

∥∥
r

)∥∥∥X̄tk − X̂k

∥∥∥
s

+
∥∥∥Ȳ i

k+1 − Ŷ i
k+1

∥∥∥
p
, (4.22)

where we used Lemmata 4.4 and 4.3, Hölder’s inequality and (4.14). Substituting (4.22)

into (4.21), we get

max
i∈Iq

∥∥∥Ȳ i
k − Ŷ i

k

∥∥∥
p

≤ K(1 +O(h))
(

1 +
∥∥X0

∥∥
r

+
∥∥X̂k

∥∥
r

)∥∥∥X̄tk − X̂k

∥∥∥
s

+ max
i∈Iq

∥∥∥Ȳ i
k+1 − Ŷ i

k+1

∥∥∥
p
,

for all k = 0, . . . ,m − 1. Since maxi∈Iq
∥∥Ȳ i

m − Ŷ i
m

∥∥
p

= maxi∈Iq
∥∥gi(X̄tm) − g(X̂m)

∥∥
p
≤

K
∥∥X̄tm − X̂m

∥∥
p

by the Lipschitz condition on gi, we conclude by induction. 2

Remark 4.3 Assume that X̂k is chosen to be an L2-optimal quantizer of X̄tk for each k =

0, . . . ,m. It is in particular a stationary quantizer in the sense that E[X̄tk |X̂k] = X̂k (see

[13]), and by Jensen’s inequality, we deduce that
∥∥X̂k

∥∥
2
≤ ‖X̄tk

∥∥
2
. Recalling (4.14), the

inequality (4.20) in Theorem 4.2 gives

max
i∈Iq

∥∥Ȳ i
tk
− Ŷ i

k

∥∥
1
≤ K(1 +

∥∥X0

∥∥
2
)
m∑
`=k

∥∥X̄t` − X̂`

∥∥
2
,

for all k = 0, . . . ,m. In particular, if X0 = x0 is deterministic, then X̂0 = x0, and we have

an error estimation by quantization of the value function function for the discrete-time

optimal switching problem at the initial date measured by:

max
i∈Iq

∣∣v̄i(0, x0)− v̂i0(x0)
∣∣ ≤ K(1 + |x0|)

m∑
k=1

∥∥X̄tk − X̂k

∥∥
2

(4.23)
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Suppose that one has at hand a global stack of N̄ points for the whole space-time grid, to

be dispatched with Nk points for each kth-time step, i.e.
∑m

k=1Nk = N̄ . Then, as in [2], in

the case of uniformly elliptic diffusion with bounded Lipschitz coefficients b and σ, one can

optimize over the Nk’s by using the rate of convergence for the miminal L2-quantization

error given by Zador’s theorem:

∥∥X̄tk − X̂k

∥∥
2
∼

J2,d

∥∥ϕk∥∥ 1
2
d

d+2

N
1
d
k

as Nk →∞,

where ϕk is the probability density function of X̄tk , and
∥∥ϕ∥∥

r
= (
∫
|ϕ(u)|rdu)

1
r . From [3],

we have the bound
∥∥ϕk∥∥ 1

2
d

d+2

≤ K
√
tk, for some constant K depending only on b, σ, T , d.

Substituting into (4.23) with Zador’s theorem, we obtain

max
i∈Iq

∣∣v̄i(0, x0)− v̂i0(x0)
∣∣ ≤ K(1 + |x0|)

m∑
k=1

√
tk

N
1
d
k

.

For fixed h = T/m and N̄ , the sum in the upper bound of the above inequality is minimized

over the size of the grids Γk, k = 1, . . . ,m with

Nk =

 t
d

2(d+1)

k N̄∑m
k=1 t

d
2(d+1)

k

 ,
where dxe := min{k∈ N, k ≥ x}, and we have a global rate of convergence given by:

max
i∈Iq

∣∣v̄i(0, x0)− v̂i0(x0)
∣∣ ≤ K(1 + |x0|)

h(N̄h)
1
d

.

By combining with the estimate (3.14), we obtain an error bound between the value func-

tion of the continuous-time optimal switching problem and its approximation by marginal

quantization of order h
1
2 when choosing a number of points by grid N̄h of order 1/h

3d
2 .

This has to be compared with the number of points N of lower order 1/hd in the Marko-

vian quantization approach, see Remark 4.1. The complexity of this marginal quantization

algorithm is of order O (
∑m

k=1NkNk+1). In terms of h, if we take Nk = N̄h = 1/h
3d
2 , we

then need O(1/h3d+1) operations to compute the value function. Recall that the Marko-

vian quantization method requires a complexity of higher order O(1/h4d+1), but provides

in compensation an approximation of the value function in the whole space grid X.

5 Numerical tests

We test our quantization algorithms by comparison results with explicit formulae for op-

timal switching problems derived from chapter 5 in [15]. The formulae are obtained for

infinite horizon problems, that we adapt to our case by taking as the final gain the (dis-

counted) value function for the infinite horizon problem.

30



We consider a two-regime switching problem where the diffusion is independent of the

regime and follows a geometric Brownian motion, i.e. b(x, i) = bx, σ(x, i) = σx, and the

switching costs are constant c(x, i, j) = cij ,i, j = 1, 2. The profit functions are in the form

fi(t, x) = e−βtkix
γi , i = 1, 2. From Theorem 5.3.5 in [15]), the value functions are given by:

v1(0, x) =

{
A1x

m+
+K1k1x

γ1 , x < x∗1
B2x

m− +K2k2x
γ2 − c12, x ≥ x∗1

v2(0, x) =


A2x

m+
+K2k2x

γ2 , x < x∗2
A1x

m+
+K1k1x

γ1 − c21 x∗2 ≤ x ≤ x∗2
B2x

m− +K2k2x
γ2 , x > x∗2

,

where Ai, Bi, Ki, x
∗
2 and x∗2 depend explicitly on the parameters. In the sequel, we take

for value of the parameters:

b = 0, σ = 1, c01 = c10 = 0.5, k1 = 2, k2 = 1, γ1 = 1/3, γ2 = 2/3, β = 1.

We compute the value function in regime 2 taken at X0 = 3.0 by means of the first

algorithm (Markovian quantization). We take R = 10X0 and vary m, δ and N . The results

are compared with the exact value in Table 1. Notice that the algorithm seems to be quite

robust and provides good results even when δm and m
R do not satisfy the constraints given

by our theoretical estimates in Remark 4.1.

In Table 2, we have computed the value with the marginal quantization algorithm. We

make vary the number of time steps m and the total number of grid points N̄ (dispatched

between the different time steps as described in Remark 4.3). We have used optimal quan-

tization of the Brownian motion, and the transition probabilities πll
′

k were computed by

Monte-Carlo simulations with 106 sample paths (for an analysis of the error induced by

this Monte-Carlo approximation, see Section 4 in [1]). We have also indicated the time

spent for these computations. Actually, almost all of this time comes from the Monte-

Carlo computations, as the tree descent algorithm is very fast (less than 1s for all the

tested parameters).

For the two methods, we look at the impact of the quantization number for each time

step (resp. N and N̄h) on the precision of the results. As our theoretical estimates showed

(see Remarks 4.1 and 4.3), for the first method, increasing N higher than h−1 does not

seem to improve the precision, whereas for the second method, we can see for several values

of h that changing N̄h from h−1 to h−2 or h−3 improves the precision.

Comparing the two tables, the first method seems to provide precise estimates with

slightly faster computation times, and it has the further advantage of computing simul-

taneously the value functions at any points of the space discretization grid X. However,

since most of the time spent by our second algorithm was devoted to the calculation of

the transition probabilities πll
′

k , if these were computed beforehand and stored offline, the

marginal quantization method becomes more competitive.
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(m, 1/δ,N) v̂2(0, 3.0) Numerical error (%) Algorithm time (s)

(10,10,10) 2.1925 3.0 0.2

(10,10,100) 2.1863 2.7 0.5

(10,10,1000) 2.1852 2.7 1.4

(10,100,1000) 2.1882 2.8 8.5

(10,100,5000) 2.1882 2.8 40

(100,10,100) 2.1218 0.31 1.0

(100,10,1000) 2.1213 0.33 8.0

(100,10,5000) 2.1213 0.33 39

(100,100,100) 2.1250 0.16 8.6

(100,100,1000) 2.1250 0.16 82

Exact value 2.1285

Table 1: Results obtained by Markovian quantization

(m, N̄) Ŷ 2
0 Numerical error (%) Algorithm time (s)

(10,100) 2.2080 3.7 4.4

(10,1000) 2.2174 4.2 4.9

(10,10000) 2.1276 0.04 5.8

(100,1000) 2.1233 0.24 36

(100,10000) 2.1316 0.15 48

(100,50000) 2.1301 0.07 65

(1000,10000) 2.1161 0.58 353

(1000,50000) 2.1213 0.34 498

Table 2: Results obtained by marginal quantization
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